3.243 \(\int (d \cos (a+b x))^{9/2} \csc ^3(a+b x) \, dx\)

Optimal. Leaf size=113 \[ -\frac{7 d^3 (d \cos (a+b x))^{3/2}}{6 b}-\frac{7 d^{9/2} \tan ^{-1}\left (\frac{\sqrt{d \cos (a+b x)}}{\sqrt{d}}\right )}{4 b}+\frac{7 d^{9/2} \tanh ^{-1}\left (\frac{\sqrt{d \cos (a+b x)}}{\sqrt{d}}\right )}{4 b}-\frac{d \csc ^2(a+b x) (d \cos (a+b x))^{7/2}}{2 b} \]

[Out]

(-7*d^(9/2)*ArcTan[Sqrt[d*Cos[a + b*x]]/Sqrt[d]])/(4*b) + (7*d^(9/2)*ArcTanh[Sqrt[d*Cos[a + b*x]]/Sqrt[d]])/(4
*b) - (7*d^3*(d*Cos[a + b*x])^(3/2))/(6*b) - (d*(d*Cos[a + b*x])^(7/2)*Csc[a + b*x]^2)/(2*b)

________________________________________________________________________________________

Rubi [A]  time = 0.081668, antiderivative size = 113, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {2565, 288, 321, 329, 298, 203, 206} \[ -\frac{7 d^3 (d \cos (a+b x))^{3/2}}{6 b}-\frac{7 d^{9/2} \tan ^{-1}\left (\frac{\sqrt{d \cos (a+b x)}}{\sqrt{d}}\right )}{4 b}+\frac{7 d^{9/2} \tanh ^{-1}\left (\frac{\sqrt{d \cos (a+b x)}}{\sqrt{d}}\right )}{4 b}-\frac{d \csc ^2(a+b x) (d \cos (a+b x))^{7/2}}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[(d*Cos[a + b*x])^(9/2)*Csc[a + b*x]^3,x]

[Out]

(-7*d^(9/2)*ArcTan[Sqrt[d*Cos[a + b*x]]/Sqrt[d]])/(4*b) + (7*d^(9/2)*ArcTanh[Sqrt[d*Cos[a + b*x]]/Sqrt[d]])/(4
*b) - (7*d^3*(d*Cos[a + b*x])^(3/2))/(6*b) - (d*(d*Cos[a + b*x])^(7/2)*Csc[a + b*x]^2)/(2*b)

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int (d \cos (a+b x))^{9/2} \csc ^3(a+b x) \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{x^{9/2}}{\left (1-\frac{x^2}{d^2}\right )^2} \, dx,x,d \cos (a+b x)\right )}{b d}\\ &=-\frac{d (d \cos (a+b x))^{7/2} \csc ^2(a+b x)}{2 b}+\frac{(7 d) \operatorname{Subst}\left (\int \frac{x^{5/2}}{1-\frac{x^2}{d^2}} \, dx,x,d \cos (a+b x)\right )}{4 b}\\ &=-\frac{7 d^3 (d \cos (a+b x))^{3/2}}{6 b}-\frac{d (d \cos (a+b x))^{7/2} \csc ^2(a+b x)}{2 b}+\frac{\left (7 d^3\right ) \operatorname{Subst}\left (\int \frac{\sqrt{x}}{1-\frac{x^2}{d^2}} \, dx,x,d \cos (a+b x)\right )}{4 b}\\ &=-\frac{7 d^3 (d \cos (a+b x))^{3/2}}{6 b}-\frac{d (d \cos (a+b x))^{7/2} \csc ^2(a+b x)}{2 b}+\frac{\left (7 d^3\right ) \operatorname{Subst}\left (\int \frac{x^2}{1-\frac{x^4}{d^2}} \, dx,x,\sqrt{d \cos (a+b x)}\right )}{2 b}\\ &=-\frac{7 d^3 (d \cos (a+b x))^{3/2}}{6 b}-\frac{d (d \cos (a+b x))^{7/2} \csc ^2(a+b x)}{2 b}+\frac{\left (7 d^5\right ) \operatorname{Subst}\left (\int \frac{1}{d-x^2} \, dx,x,\sqrt{d \cos (a+b x)}\right )}{4 b}-\frac{\left (7 d^5\right ) \operatorname{Subst}\left (\int \frac{1}{d+x^2} \, dx,x,\sqrt{d \cos (a+b x)}\right )}{4 b}\\ &=-\frac{7 d^{9/2} \tan ^{-1}\left (\frac{\sqrt{d \cos (a+b x)}}{\sqrt{d}}\right )}{4 b}+\frac{7 d^{9/2} \tanh ^{-1}\left (\frac{\sqrt{d \cos (a+b x)}}{\sqrt{d}}\right )}{4 b}-\frac{7 d^3 (d \cos (a+b x))^{3/2}}{6 b}-\frac{d (d \cos (a+b x))^{7/2} \csc ^2(a+b x)}{2 b}\\ \end{align*}

Mathematica [C]  time = 0.635051, size = 78, normalized size = 0.69 \[ \frac{d^5 \left (21 \sqrt [4]{-\cot ^2(a+b x)} \, _2F_1\left (\frac{1}{4},\frac{1}{4};\frac{5}{4};\csc ^2(a+b x)\right )+(2 \cos (2 (a+b x))-5) \cot ^2(a+b x)\right )}{6 b \sqrt{d \cos (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*Cos[a + b*x])^(9/2)*Csc[a + b*x]^3,x]

[Out]

(d^5*((-5 + 2*Cos[2*(a + b*x)])*Cot[a + b*x]^2 + 21*(-Cot[a + b*x]^2)^(1/4)*Hypergeometric2F1[1/4, 1/4, 5/4, C
sc[a + b*x]^2]))/(6*b*Sqrt[d*Cos[a + b*x]])

________________________________________________________________________________________

Maple [B]  time = 0.204, size = 394, normalized size = 3.5 \begin{align*} -{\frac{4\,{d}^{4}}{3\,b} \left ( \cos \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{2}\sqrt{2\, \left ( \cos \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}d-d}}-{\frac{4\,{d}^{4}}{3\,b}\sqrt{2\, \left ( \cos \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}d-d}}+2\,{\frac{{d}^{4}\sqrt{d \left ( 2\, \left ( \cos \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}-1 \right ) }}{b}}+{\frac{7}{8\,b}{d}^{{\frac{9}{2}}}\ln \left ({ \left ( 4\,d\cos \left ( 1/2\,bx+a/2 \right ) +2\,\sqrt{d}\sqrt{-2\, \left ( \sin \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}d+d}-2\,d \right ) \left ( \cos \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) -1 \right ) ^{-1}} \right ) }+{\frac{{d}^{4}}{16\,b}\sqrt{-2\, \left ( \sin \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}d+d} \left ( \cos \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) -1 \right ) ^{-1}}+{\frac{7}{8\,b}{d}^{{\frac{9}{2}}}\ln \left ({ \left ( -4\,d\cos \left ( 1/2\,bx+a/2 \right ) +2\,\sqrt{d}\sqrt{-2\, \left ( \sin \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}d+d}-2\,d \right ) \left ( \cos \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) +1 \right ) ^{-1}} \right ) }+{\frac{7\,{d}^{5}}{4\,b}\ln \left ({ \left ( -2\,d+2\,\sqrt{-d}\sqrt{2\, \left ( \cos \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}d-d} \right ) \left ( \cos \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{-1}} \right ){\frac{1}{\sqrt{-d}}}}-{\frac{{d}^{4}}{16\,b}\sqrt{-2\, \left ( \sin \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}d+d} \left ( \cos \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) +1 \right ) ^{-1}}+{\frac{{d}^{4}}{8\,b}\sqrt{2\, \left ( \cos \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}d-d} \left ( \cos \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{-2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*cos(b*x+a))^(9/2)*csc(b*x+a)^3,x)

[Out]

-4/3/b*d^4*cos(1/2*b*x+1/2*a)^2*(2*cos(1/2*b*x+1/2*a)^2*d-d)^(1/2)-4/3/b*d^4*(2*cos(1/2*b*x+1/2*a)^2*d-d)^(1/2
)+2/b*d^4*(d*(2*cos(1/2*b*x+1/2*a)^2-1))^(1/2)+7/8/b*d^(9/2)*ln((4*d*cos(1/2*b*x+1/2*a)+2*d^(1/2)*(-2*sin(1/2*
b*x+1/2*a)^2*d+d)^(1/2)-2*d)/(cos(1/2*b*x+1/2*a)-1))+1/16/b*d^4/(cos(1/2*b*x+1/2*a)-1)*(-2*sin(1/2*b*x+1/2*a)^
2*d+d)^(1/2)+7/8/b*d^(9/2)*ln((-4*d*cos(1/2*b*x+1/2*a)+2*d^(1/2)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)-2*d)/(cos
(1/2*b*x+1/2*a)+1))+7/4/b*d^5/(-d)^(1/2)*ln((-2*d+2*(-d)^(1/2)*(2*cos(1/2*b*x+1/2*a)^2*d-d)^(1/2))/cos(1/2*b*x
+1/2*a))-1/16/b*d^4/(cos(1/2*b*x+1/2*a)+1)*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)+1/8/b*d^4/cos(1/2*b*x+1/2*a)^2*
(2*cos(1/2*b*x+1/2*a)^2*d-d)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(b*x+a))^(9/2)*csc(b*x+a)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 3.4935, size = 1027, normalized size = 9.09 \begin{align*} \left [-\frac{42 \,{\left (d^{4} \cos \left (b x + a\right )^{2} - d^{4}\right )} \sqrt{-d} \arctan \left (\frac{2 \, \sqrt{d \cos \left (b x + a\right )} \sqrt{-d}}{d \cos \left (b x + a\right ) + d}\right ) - 21 \,{\left (d^{4} \cos \left (b x + a\right )^{2} - d^{4}\right )} \sqrt{-d} \log \left (-\frac{d \cos \left (b x + a\right )^{2} - 4 \, \sqrt{d \cos \left (b x + a\right )} \sqrt{-d}{\left (\cos \left (b x + a\right ) - 1\right )} - 6 \, d \cos \left (b x + a\right ) + d}{\cos \left (b x + a\right )^{2} + 2 \, \cos \left (b x + a\right ) + 1}\right ) + 8 \,{\left (4 \, d^{4} \cos \left (b x + a\right )^{3} - 7 \, d^{4} \cos \left (b x + a\right )\right )} \sqrt{d \cos \left (b x + a\right )}}{48 \,{\left (b \cos \left (b x + a\right )^{2} - b\right )}}, \frac{42 \,{\left (d^{4} \cos \left (b x + a\right )^{2} - d^{4}\right )} \sqrt{d} \arctan \left (\frac{2 \, \sqrt{d \cos \left (b x + a\right )} \sqrt{d}}{d \cos \left (b x + a\right ) - d}\right ) + 21 \,{\left (d^{4} \cos \left (b x + a\right )^{2} - d^{4}\right )} \sqrt{d} \log \left (-\frac{d \cos \left (b x + a\right )^{2} + 4 \, \sqrt{d \cos \left (b x + a\right )} \sqrt{d}{\left (\cos \left (b x + a\right ) + 1\right )} + 6 \, d \cos \left (b x + a\right ) + d}{\cos \left (b x + a\right )^{2} - 2 \, \cos \left (b x + a\right ) + 1}\right ) - 8 \,{\left (4 \, d^{4} \cos \left (b x + a\right )^{3} - 7 \, d^{4} \cos \left (b x + a\right )\right )} \sqrt{d \cos \left (b x + a\right )}}{48 \,{\left (b \cos \left (b x + a\right )^{2} - b\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(b*x+a))^(9/2)*csc(b*x+a)^3,x, algorithm="fricas")

[Out]

[-1/48*(42*(d^4*cos(b*x + a)^2 - d^4)*sqrt(-d)*arctan(2*sqrt(d*cos(b*x + a))*sqrt(-d)/(d*cos(b*x + a) + d)) -
21*(d^4*cos(b*x + a)^2 - d^4)*sqrt(-d)*log(-(d*cos(b*x + a)^2 - 4*sqrt(d*cos(b*x + a))*sqrt(-d)*(cos(b*x + a)
- 1) - 6*d*cos(b*x + a) + d)/(cos(b*x + a)^2 + 2*cos(b*x + a) + 1)) + 8*(4*d^4*cos(b*x + a)^3 - 7*d^4*cos(b*x
+ a))*sqrt(d*cos(b*x + a)))/(b*cos(b*x + a)^2 - b), 1/48*(42*(d^4*cos(b*x + a)^2 - d^4)*sqrt(d)*arctan(2*sqrt(
d*cos(b*x + a))*sqrt(d)/(d*cos(b*x + a) - d)) + 21*(d^4*cos(b*x + a)^2 - d^4)*sqrt(d)*log(-(d*cos(b*x + a)^2 +
 4*sqrt(d*cos(b*x + a))*sqrt(d)*(cos(b*x + a) + 1) + 6*d*cos(b*x + a) + d)/(cos(b*x + a)^2 - 2*cos(b*x + a) +
1)) - 8*(4*d^4*cos(b*x + a)^3 - 7*d^4*cos(b*x + a))*sqrt(d*cos(b*x + a)))/(b*cos(b*x + a)^2 - b)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(b*x+a))**(9/2)*csc(b*x+a)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d \cos \left (b x + a\right )\right )^{\frac{9}{2}} \csc \left (b x + a\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(b*x+a))^(9/2)*csc(b*x+a)^3,x, algorithm="giac")

[Out]

integrate((d*cos(b*x + a))^(9/2)*csc(b*x + a)^3, x)